Outer-sphere association of hexacyanoferrate and nitrogen betaine anions

Vitalii Yu. Kotov,*a Yuliya G. Gorbunova,a Sof'ya A. Kostina,a Gul'nara K. Kadorkina,b Vasilii R. Kostyanovskyb and Remir G. Kostyanovskyb

^a N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 095 954 1279; e-mail: tsir@elch.chem.msu.ru

^b N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 095 938 2156; e-mail: kost@center.chph.ras.ru

10.1070/MC2001v011n05ABEH001464

The electronic spectrum of an aqueous solution of an equimolar mixture of nitrogen betaine (p $K_1 = 1.72$, p $K_2 = 3.62$) and hexacyanoferrate anions exhibited a charge-transfer band at 26100 cm⁻¹, which is indicative of the outer-sphere association of these ions.

The cations of aromatic nitrogen-containing heterocycles [such as methyl viologen (MV²⁺) and pyridinium salts] are used as test materials in the studies of electron-transfer processes. Because the electron affinity of these cations is high, ion pairs with the participation of these cations exhibit absorption in the visible region of the electronic spectrum: 1,2

$$MV^{2+} + [Fe(CN)_6]^{4-} = MV^{2+}, [Fe(CN)_6]^{4-}$$

 $MV^{2+}, [Fe(CN)_6]^{4-} + hv \rightarrow MV^{+}, [Fe(CN)_6]^{3-}$

It is well known that charge-transfer bands are characteristic of not only cation–anion associates but also anion–anion systems. 3,4 In these latter, the complex ions $[Fe(CN)_6]^{3-}$, $[FeNO(CN)_5]^{2-}$ or $[Co(edta)]^-$ serve as electron acceptors. The contact between anions in these systems takes place by the cooperative interaction:

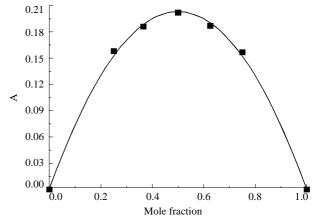
[Fe(CN)₆]³⁻ +
$$n$$
K⁺ + [Fe(CN)₆]⁴⁻ = [Fe(CN)₆]³⁻, n K⁺,[Fe(CN)₆]⁴⁻
[Fe(CN)₆]³⁻, n K⁺,[Fe(CN)₆]⁴⁻ + $h\nu$ → [Fe(CN)₆]⁴⁻, n K⁺,[Fe(CN)₆]³⁻

We examined the association of hexacyanoferrate(II) ions and the anions of a nitrogen betaine, 2-N-pyridiniumhydrosuccinate-1 1. Compound 1 was prepared according to the published procedure⁵ by the reaction of pyridine with maleic acid in an aqueous solution (10 days at 20 °C).[†]

$$\begin{array}{c|c}
 & H \\
 & H \\
 & COOH \\
 & CH_2COOH
\end{array}$$

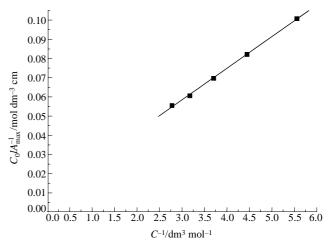
$$\begin{array}{c|c}
 & H \\
 & COO \\
 & CH_2COOH
\end{array}$$

$$\begin{array}{c|c}
 & H \\
 & COO \\
 & CH_2COOH
\end{array}$$


$$\begin{array}{c|c}
 & H \\
 & COO \\
 & CH_2COOH
\end{array}$$

$$\begin{array}{c|c}
 & H \\
 & COO \\
 & CH_2COOH
\end{array}$$

$$\begin{array}{c|c}
 & (1-H)^-
\end{array}$$


The dissociation constants of protonated $(1 + H)^+$ and neutral 1 forms of the nitrogen betaine were found by potentiometric titration. $(pK_1 = 1.72\pm0.05 \text{ and } pK_2 = 3.62\pm0.05)$. Betaine anion $(1 - H)^-$ is resistant to an excess of an alkali $(pH\ 11)$ at $20\,^{\circ}\text{C}$. This fact allowed us to examine its properties in aqueous solutions of compound 1 containing an excess of $K_2\text{CO}_3$. Note that the potassium salt is more readily soluble in water than compound 1, as evidenced by the ^1H NMR spectrum (in $D_2\text{O}$) of the residue after evaporation of a solution of the potassium salt (cf. ref. 5). The electronic absorption spectrum. 8 of $(1 - H)^-$ exhibited a long-wavelength absorption band at $38\,300\,\text{cm}^{-1}$ ($\varepsilon = 3750\,\text{dm}^3\,\text{mol}^{-1}\,\text{cm}^{-1}$) and no absorption in the visible and UV regions of the spectrum. Thus, the concentration can be varied over a wide range in the course of spectrophotometric measure-

The 1H NMR spectra were measured on a Bruker WM-400 spectrometer. $K_4[Fe(CN)_6]\cdot 3H_2O$ and other chemicals were of reagent grade.

Figure 1 Absorbance of the anion–anion complex $(\mathbf{1}-\mathbf{H})^-$, nK^+ , $[Fe(CN)_6]^{4-}$ at $\nu=25\,000$ cm⁻¹ as a function of the mole fraction of $(\mathbf{1}-\mathbf{H})^-$. $C_{(1-\mathbf{H})}+C_{Fe(CN)_6}=0.12$ mol dm⁻³, $C_K=2$ mol dm⁻³.

ments. The electronic absorption spectrum of an aqueous solution containing compound **1**, K₄[Fe(CN)₆]·3 H₂O (0.06 mol dm⁻³ each) and an excess of K₂CO₃ ($C_{\rm K^+}$ = 2 mol dm⁻³) exhibited a broad band at 26100±100 cm⁻¹ ($\nu_{1/2}$ = 4700±100 cm⁻¹), which was absent from the spectra of the initial components of the mixture. The 1:1 composition of the resulting complex was determined by the isomolar series method (Figure 1). The stability constant (0.54±0.06 mol dm⁻³ at $C_{\rm K^+}$ = 2.34 mol dm⁻³) and the molar extinction coefficient at a band maximum (115±15 dm³ mol⁻¹ cm⁻¹) were calculated by the Benesi–Hildebrand method⁶ (Figure 2). The molar extinction coefficient is close to the typical values of 150–200 dm³ mol⁻¹ cm⁻¹ found for ion pairs of the hexacyanoferrate ion with N-heterocyclic cations. The stability constant of the complex formed is close to 0.05–0.3 dm³ mol⁻¹, which is characteristic of outer-sphere anion–anion associates. Thus, the

Figure 2 Absorbance of the anion–anion complex $(1-H)^-$, nK^+ , $[Fe(CN)_6]^{4-}$ as a function of the concentration of $(1-H)^-$ in the Benesi–Hildebrand equation coordinates. $C_{Fe(CN)_6}=0.12~{\rm mol~dm^{-3}}$, $C_{\rm K}=2.34~{\rm mol~dm^{-3}}$.

 $^{^{\}dagger}$ 1: yield 85%, mp 214 °C. ^{1}H NMR (D₂O) δ : 3.43 (m, 2H, CH₂, ABX₃ spectrum, $\Delta\nu$ 68.0 Hz, $^{3}J_{AX}$ 9.9 Hz, $^{3}J_{BX}$ 4.4 Hz, $^{2}J_{AB}$ –18.0 Hz), 5.64 (dd, 1H, CH), 8.02 (dd, 2H, 2 2 H-H, ^{3}J 6.1 Hz, ^{3}J 7.8 Hz), 8.52 (t, 1H, 2 H-H, ^{3}J 7.8 Hz) 8.88 (d, 2H, 2 2 H-H, ^{3}J 6.1 Hz). Found (%): N, 7.10, 7.20. Calc. for C₀H₉O₄N (%): N, 7.18.

[‡] The potentiometric titration of a 0.1 M solution of compound 1 and its mixture with 0.1 M HCl was performed using a 0.1 M NaOH solution and a Mettler Delta 340 pH-meter with a combined pH electrode.

[§] The electronic absorption spectra were measured on a Cary 100 spectrophotometer (Varian) in the frequency range 20000–50000 cm⁻¹ at 25 °C using quartz cuvettes with an optical path length of 1 cm. The absorption bands were approximated by Gaussian functions.

observed absorption band can be reliably attributed to the outersphere charge transfer between the anions:

$$(1 - H)^- + nK^+ + [Fe(CN)_6]^4 = (1 - H)^-, nK^+, [Fe(CN)_6]^4 - (1 - H)^-, nK^+, [Fe(CN)_6]^4 + hv \rightarrow (1 - H)^2, nK^+, [Fe(CN)_6]^3 - (1 - H)^2, nK^+, nK$$

The position of the charge-transfer band maximum in the test associate at the boundary between the visible and UV regions of the spectrum indicates that the electron affinity of nitrogen betaine anion $(1-H)^-$ is lower than that of N-heterocyclic cations, which were studied previously. The absorption bands of the ion pairs of these N-heterocyclic cations with $[Fe(CN)_6]^{4-}$ lie in the visible region of the spectrum, and the electron affinity is 2.8-3.5 eV, as estimated according to ref. 7. An analogous estimation gave a value of 2.5 eV for $(1-H)^-$.

This study was supported by the Russian Foundation for Basic Research (grant nos. 00-03-40104 and 00-03-81187) and INTAS (grant no. 99-0157).

References

- 1 H. E. Toma, Can. J. Chem., 1979, 57, 2079.
- 2 J. C. Curtis, B. P. Sullivan and T. J. Meyer, *Inorg. Chem.*, 1980, **19**, 3833.
- 3 R. Billing and D. E. Khoshtariya, Inorg. Chem., 1994, 33, 4038.
- 4 A. B. Nikol'skii and V. Yu. Kotov, Mendeleev Commun., 1995, 139.
- 5 R. G. Kostyanovsky, V. R. Kostyanovsky, G. K. Kadorkina and V. Yu. Torbeev, *Mendeleev Commun.*, 2000, 83.
- 6 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703.
- 7 S. I. Gorelsky, V. Yu. Kotov and A. B. P. Lever, *Inorg. Chem.*, 1998, 37, 4584.

Received: 20th April 2001; Com. 01/1790